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On the Numerical Errors Induced by the Space-Time
Discretization in the LE-FDTD Method

F. Alimenti and L. Rosdlli, Senior Member, |EEE

Abstract—In this letter, the accuracy of the lumped element
finite-difference time-domain (LE-FDTD) method is discussed in
the particular case of a planar distribution of equal resistors. Fol-
lowing the von Neumann technique and assuming a uniform grid,
the effective impedance of the lumped resistor has been rigorously
derived in a closed form. The result obtained has been compared
withtheLE-FDTD simulation of asimpletest structure. Thisstruc-
ture consists of an infinitely long parallel-plate waveguide loaded
with the planar distribution of resistors. The excellent agreement
obtained validates the approach showing a dependence of the ef-
fective resistor impedance on spatial and temporal discretization

steps.

Index Terms—Finite-difference time-domain (FDTD), lumped
elements, numerical parasitics.

|I. INTRODUCTION

UMPED elements can be incorporated into the finite-dif-

ferencetime-domain (FDTD) framework to effectively de-
scribe el ectronic devices and networks, the dimensions of which
are smaller than the wavelength of the exciting signal [1], [2].

The response of such elements, however, deviates from ide-
aity because of numerical errors[3]. First,inthe FDTD analysis
of a high-frequency electronic circuit, the unavoidable numer-
ical discontinuities associated to the junction between lumped
element and distributed structures must be accounted for. For ex-
ample, if aninterconnection lineisterminated with alumped re-
sistor, astep-like discontinuity isformed at the connecting point.
A quantitative estimation of these parasitic effectsis very diffi-
cult unless suitable de-embedding techniques are adopted [4]. A
second cause of numerical errorsisthe effect of the well-known
numerical dispersion of the FDTD lattice on the actual electrical
behavior of the lumped element. In this case, the problem con-
cerns the approximation of the Faraday and Ampére equations
within the discretized space time domain.

This work aims at analytically estimating the latter kind of
error. To this purpose, the particular case of aplanar distribution
of equal resistors has been considered. As aresult, the effective
impedance of the lumped resistor is obtained showing a depen-
dence on the spatial and temporal discretization steps.

Il. NUMERICAL ERRORS

The scope of this sectionisto provide an eval uation of the nu-
merical errors associated with the lumped elements, at leastina
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Fig. 1. Cross-sectiona view of theresistive layer: each resistor R isplaced on
adifferent FDTD cell.

simple, but meaningful, case. A planar distribution of equal re-
sistors has been considered to form alayer asdepicted in Fig. 1.
The basic idea is to derive the behavior of the generic resistor
embedded in the layer by evaluating the scattering off the layer
when a plane wave impinges on it. The same methodology of
investigation has been used in the past to derive the numerical
errors associated to dielectric [5] or meshing [6] discontinuities.

For the accurate evaluation of the scattering, the resistive
layer has been placed across an infinitely long parallel-plate
waveguide (PPWG), as illustrated in Fig. 2. In particular, the
resistors have been oriented aong the z-axis, parallel to the
electric field of the fundamental TEM mode propagating in the
structure.

The reflection coefficient of the above geometry can simply
be evaluated if the resistance R is assumed to be independent
from the space time discretization, i.e., if the numerical errors
are neglected. The result follows immediately observing that
each resistor of the layer can be seen as placed across a
single-cell PPWG of width Ay and height Axz. The load of
such a PPWG isrepresented by its characteristic impedance Zg
in parallel with the resistor R, thus

 Yo-(Yo+1/R) 1

S Yo+ (0 +1/R) 142308

Ty

@

where Yy = 1/Zg, Zo = nAz/Ay andn = \/p/c isthe wave
impedance of the medium.

Nevertheless, experiments carried out by the authors have
demonstrated that the reflection coefficient of the structure in
Fig. 2 deviatesfrom (1) because of numerical errors. To analyze
these effects, the discontinuity problem stated in Fig. 2 must be
solved in the discretized space time.
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Fig. 2. Infinitely long PPWG loaded with a resistive layer at the discrete
z-coordinate k = 0.

Thelumped element FDTD (LE-FDTD) equation used to up-
date the electric field component £, on the resistive layer at lo-
caionk = 0is:

Erti(i+ L 4,00 —Er(i+1, 4,0
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For the rigorous solution of the considered scattering problem,
electric and magnetic fields must be written as the superposi-
tion of plane waves propagating in the discretized space time
domain. Following the von Neumann analysis [7, p. 827], the
electric field is assumed to be

E, i e—ix:k
+E, peftmeixzk it <0 (3)
Emjtejgnefj%k, ifk>0

EY(i+3%,4,k) =

where E,. ;, B, ., and E,_, arethe amplitudes of the incident,
reflected and transmitted electric fields. The magnetic field can
be expresses in terms of the same quantities as follows:
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In the above expressions, €2 and . are the normalized angular
frequency and phase constant, respectively
Q=wAt; Xz = B Az 5)

and g3, is the numerical phase constant of the algorithm. The
above quantities satisfy the well-known FDTD dispersion rela

tionship [8]
1 /Yy 1 . rx.
v At S <E) T Az Stk (7) ©)

v = 1/,/pe being the phase vel ocity of thewavesin the consid-
ered medium. The amplitudes of incident, reflected and trans-
mitted waves are related by the continuity of the electric field
E,. at the layer location &k = 0

Ea:,i +Ea:, r = Lzt (7)

In order to compute the reflection coefficient of the resistive
layer, the discrete plane wave solutions (3), (4) must be substi-
tuted into the LE-FDTD equation (2). Using the continuity of
theelectricfield £, at the layer location (7), after some manip-
ulations, one obtains

2v

; 2 z
Ea:, 1‘6_] (X:/Q) +] AU Eﬂ?,iSin (X?) = (Eﬂ? @ + Eﬂ? 7’)
z

< <

Az Q _i_xi (& (8)
RAyA: P\ ) T AP\ )|

The above formula can now be simplified using the FDTD dis-
persion relationship (6) and exploited to derive the reflection
coefficient

Once the reflection coefficient has been evaluated rigoroudly,
it can be used to derive the numerical impedance of the layer.
This can be done by comparing the expressions of I'y and I'g;
it emerges that the value of R in (1) isreplaced in (9) by

(10)

which isjust the numerical impedance of each lumped resistor
embedded in the layer. The obtained result indicates a purely
resistive component depending by the space time discretization

steps.

Ill. VALIDATION

In order to validate the above computations, the reflection
coefficient of the structure in Fig. 2 has been determined both
analyticaly, using the formula (9), and numerically, adopting
the three-dimensional LE-FDTD simulator developed in [9].

In the latter case, the geometry has been discretized with a
mesh featuring Az = 0.44 mmand Ay = Az = 2 mm;
the time step has been chosen at the Courant’s limit and is
At = 1.4 ps. Each layer resistance is R = 83.3 2. To obtain a
very high accuracy, the PPWG has been excited and terminated
with a matched modal source and a modal absorbing boundary
condition respectively [10]. As post-processing option, the ref-
erence plane has been defined exactly at the location of the re-
sistive layer.
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Fig. 3. Percentage deviation of the resistive layer reflection coefficient with
respect to the ideal case (no discretization effects). Comparison of the FDTD
with the model predictions.

The results are presented in the form of percentage deviation
py, of thereflection coefficient I" g with respect to theideal case

@
(1D

The percentage deviation defined above is illustrated in Fig. 3
for the two different cases where I' g is computed using either
the model in (9) or thedirect LE-FDTD simulation of the struc-
ture.

As it can be seen from the figure, the derived model agrees
perfectly with the LE-FDTD computations, thus validating the
expression of the cell resistance stated in (10).

IV. CONCLUSION

The numerical errors associated to the incorporation of
lumped element into the FDTD framework have been rigor-

oudy evaluated in the smple but comprehensive case of a
planar distribution of identical resistors. The results obtained
show that the effective impedance of the resistorsis purely real
and depending on the space time discretization. These consid-
erations could be used to predict the performances of absorbing
boundary conditions based on the adoption of resistive layers.
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